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Abstract

A search for exclusive or quasi-exclusive γγ → W+W− production, via pp →
p(∗)W+W−p(∗) → p(∗)µ±e∓p(∗) at

√
s = 8 TeV, is reported using data corresponding

to an integrated luminosity of 19.7 fb−1. Events are selected by requiring the pres-
ence of an electron-muon pair with large transverse momentum pT(µ

±e∓) > 30 GeV,
and no associated charged particles detected from the same vertex. The 8 TeV re-
sults are combined with the previous 7 TeV results (obtained for 5.05 fb−1 of data).
In the signal region, 13 (2) events are observed over an expected background of
3.9± 0.6 (0.84± 0.15) events for 8 (7) TeV, resulting in a combined excess of 3.4σ over
the background-only hypothesis. The observed yields and kinematic distributions
are compatible with the standard model prediction for exclusive and quasi-exclusive
γγ → W+W− production. Upper limits on the anomalous quartic gauge coupling
operators aW

0,C (dimension-6) and fM0,1,2,3 (dimension-8), the most stringent to date,
are derived from the measured dilepton transverse momentum spectrum.

Submitted to the Journal of High Energy Physics

c© 2016 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

∗See Appendix A for the list of collaboration members

ar
X

iv
:1

60
4.

04
46

4v
1 

 [
he

p-
ex

] 
 1

5 
A

pr
 2

01
6

FERMILAB-PUB-16-204-CMS

http://creativecommons.org/licenses/by/3.0




1

1 Introduction
A non-negligible fraction of proton-proton collisions at the LHC involves (quasi-real) photon
interactions that provide a unique opportunity to study high-energy γγ processes at center-of-
mass energies and integrated luminosities much higher than previously available [1]. Using the√

s = 7 TeV data collected during Run 1 of the LHC, measurements of γγ → µ+µ− [2, 3] and
γγ→ e+e− [3, 4] production were performed, followed by the first studies of γγ→W+W− [5].
The latter process, occurring at leading order via the diagrams shown in Fig. 1, is particularly
well suited to search for physics beyond the standard model (SM). Such deviations from the
SM may be quantified through anomalous quartic gauge couplings (AQGC) of operators of
dimension-6 or -8 [6, 7]. Specific models including anomalous gauge-Higgs couplings [8, 9],
as well as composite Higgs [9–11] or warped extra dimensions [10] scenarios, will also result
in deviations from the SM predictions for the γγ → W+W− (differential and/or integrated)
cross sections. Prior to the LHC, limits on AQGC were obtained through triboson (Zγγ and
W+W−γ) production, and WW → γγ scattering at LEP [12–18], and through γγ → W+W−

scattering at the Tevatron [19]. Anomalous quartic gauge couplings have been explored at the
LHC through triboson (Wγγ or WVγ, where V is a W or Z boson) production [20, 21], and
same-charge WW→WW scattering [22, 23].

Figure 1: Quartic (left), t-channel (center), and u-channel (right) diagrams contributing to the
γγ → W+W− process at leading order in the SM. The p(∗) indicates that the final state pro-
ton(s) remain intact (“exclusive” or “elastic” production), or dissociate (“quasi-exclusive” pro-
duction).

This paper presents an update of the 7 TeV CMS γγ → W+W− measurement [5], largely fol-
lowing the same analysis strategy as for 7 TeV but using the 8 TeV data set collected in 2012. The
signal topology considered is pp→ p(∗)W+W−p(∗), where the p(∗) indicates that the final state
protons either remain intact (“exclusive” or “elastic” production), or dissociate into an unde-
tected system (“quasi-exclusive” or “proton dissociation” production). The W+W− → µ±e∓

(plus undetected neutrinos) channel is the final state used to search for a signal, as the back-
grounds due to Drell–Yan (DY) and γγ→ `+`− production are smaller than in the same-flavor
final states. Events in which one or both of the W bosons decay into a tau lepton, with a
subsequent decay of the tau to a muon or electron and neutrinos, are also included in the sig-
nal. In contrast to exclusive production, inclusive W+W− production is always accompanied
by underlying event activity originating from semihard multiple-parton interactions and from
softer ”spectator” partons at forward rapidities. This will almost always result in the produc-
tion of additional detectable charged particles from the µ±e∓ vertex. The experimental signa-
ture for the signal therefore consists of a muon-electron pair with large transverse momentum
pT(µ

±e∓), originating from a common primary vertex with no additional charged particles
detected.

Control samples of γγ → µ+µ− and γγ → e+e− events are used to study the efficiency of
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the exclusive selection in data, as well as the “rescattering” corrections [24, 25], from addi-
tional parton interactions between the protons, in semiexclusive collisions. Control regions
in the dilepton pT and charged-particle multiplicity distributions are used to study the main
background contributions to the signal. Finally the pT(µ

±e∓) distribution is used as the dis-
criminating variable to measure the standard model γγ→W+W− cross section, and to search
for evidence of AQGC.

Sections 2–3 give a general description of the theory and the CMS detector, while Sections 4–5
describe the data sets, Monte Carlo (MC) simulations, and event selection. Sections 6–8 explain
the 8 TeV analysis, and Section 9 describes the present 8 TeV results, as well as their combination
with those from the previous 7 TeV study.

2 Phenomenology of anomalous couplings in γγ→W+W− inter-
actions

Within the SM, the triple (WWγ) and quartic (WWγγ) couplings that contribute to γγ →
W+W− production are fully connected through the requirement of gauge invariance. In con-
trast, effective field theories can be constructed to quantify potential deviations from the SM
by introducing genuine AQGCs through dimension-6 operators that are not related to the SM
triple or quartic couplings [26]. By imposing U(1)EM and global custodial SU(2)C symmetries,
and further requiring charge-conjugation and parity to be separately conserved, two such op-
erators are allowed with couplings denoted aW

0 /Λ2 and aW
C /Λ2, where Λ is the energy scale

for new physics. This approach corresponds to assuming a nonlinear representation of the
spontaneously broken SU(2)⊗U(1) symmetry.

With the discovery of a light Higgs boson [27–29], a linear realization of the SU(2) ⊗ U(1)
symmetry of the SM, spontaneously broken by the Higgs mechanism, is possible. Thus, the
lowest order operators, where new physics may cause deviations in the quartic gauge boson
couplings alone, are of dimension 8. In the dimension-8 formalism [30–32] there are fourteen
operators contributing to WWγγ couplings, which in general will also generate a WWZγ ver-
tex. By assuming that the anomalous WWZγ vertex vanishes, a direct relationship between
the dimension-8 fM,0,1,2,3/Λ4 couplings and the dimension-6 aW

0,C/Λ2 couplings can be recov-
ered [20, 30–32]:

aW
0

Λ2 = −4M2
W

e2
fM,0

Λ4 ,

aW
C

Λ2 =
4M2

W
e2

fM,1

Λ4 ,
(1)

where MW is the mass of the W boson and e is the unit of electric charge. The fM,2,3/Λ4 cou-
plings can be determined from the relations fM,0 = 2 fM,2 and fM,1 = 2 fM,3, which are a result
of the constraint on the WWZγ vertex vanishing.

In both dimension-6 and dimension-8 scenarios, the γγ → W+W− cross section in the pres-
ence of anomalous couplings would increase rapidly with the photon-photon center-of-mass
energy Wγγ. For couplings of the size that can be probed with the current data set, this would
result in violation of unitarity at scales well below those reached in 7 and 8 TeV pp collisions
at the LHC. To prevent this, various approaches modifying the effective Lagrangian have been
proposed [33–35]. In this analysis, following the previous γγ → W+W− results from the LHC
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and Tevatron, we consider a dipole form factor with a cutoff scale Λcutoff:

aW
0,C(W

2
γγ) =

aW
0,C(

1 +
W2

γγ

Λ2
cutoff

)2 .

We quote both the limits which preserve unitarity, with a dipole form factor and Λcutoff =
500 GeV as was used in previous publications [5, 19], and limits with Λcutoff → ∞, which is
equivalent to no form factor, violating unitarity.

The presence of anomalous couplings among the gauge bosons is expected to result in a harder
spectrum of the transverse momentum of the W-pair system which can be probed experimen-
tally by the hardness of the spectra in their decay products and, suitably, by that of the dilepton
system of electron and muon.

3 The CMS detector
A detailed description of the CMS experiment can be found in Ref. [36]. The central feature of
the CMS apparatus is a superconducting solenoid, of 6 m internal diameter. Within the field
volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL)
and the brass-scintillator hadronic calorimeter (HCAL). Muons are measured in gas-ionization
detectors embedded in the steel flux-return yoke of the solenoid. The momentum resolution
for electrons with pT ∼ 45 GeV from Z → ee decays ranges from 1.7% for nonshowering elec-
trons in the barrel region to 4.5% for showering electrons in the endcaps [37]. The calorimeter
cells are grouped in projective towers, of granularity ∆η×∆φ = 0.087×0.087 (where φ is the az-
imuthal angle in radians) in the pseudorapidity region |η| < 1.5, and increasing to 0.175×0.175
in the region 3 < |η| < 5. The silicon tracker covers a range of |η| < 2.4, and consists of three
layers made of 66 million 100×150 µm2 pixels followed by ten microstrip layers, with strips of
pitch between 80 and 180 µm. The silicon tracker is used to detect charged particles as tracks.
Muons are measured in the window |η| < 2.4, with detection planes made of three technolo-
gies: drift tubes, cathode strip chambers, and resistive-plate chambers. Thanks to the strong
magnetic field, 3.8 T, and to the high granularity of the silicon tracker, the transverse momen-
tum, pT, of the muons matched to silicon tracks is measured with a resolution better than 1.5%,
for pT smaller than 100 GeV. The resolution of z0, the point of closest approach of the track to
the beam direction z, for a 1 (10) GeV pion is 100–300 µm (30–60 µm) in the central region and
300–1000 µm (60–150 µm) in the forward region [38]. The ECAL provides coverage in a range
of |η| < 1.48 in a barrel region, and 1.48 < |η| < 3 in two endcap regions (EE). A preshower de-
tector consisting of two planes of silicon sensors interleaved with a total of 3 radiation lengths
of lead is located in front of the EE. The first level of the CMS trigger system, composed of cus-
tom hardware processors, uses information from the calorimeters and muon detectors to select
(in less than 4 µs) the most interesting events. The high-level trigger processor farm further
decreases the event rate from 100 kHz to a few hundred Hz, before data storage.

4 Data sets and Monte Carlo simulation
The analyzed data samples consist of 19.7 fb−1 of proton-proton collisions collected in 2012 at
a center-of-mass energy of

√
s = 8 TeV. This measurement is combined with a similar analysis

carried out in 2011 using 5.05 fb−1 of pp collisions collected at a center-of-mass energy of
√

s =
7 TeV. During the 8 (7) TeV data-taking period of the LHC the mean number of overlapping
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interactions per bunch crossing (“pileup”) was 21 (9). The 7 TeV data analysis is described in
Ref. [5], and the rest of this section focuses on describing the 8 TeV data analysis.

The simulated SM and anomalous signal samples of γγ → W+W− are generated with MAD-
GRAPH [39] v5 release 2.0.0, using the equivalent photon approximation (EPA) [40]. Cross-
checks with CALCHEP [41] v3.4 have also been performed since this is the generator used for
simulated SM and anomalous signal samples for the 7 TeV analysis. The elastic and proton
dissociation γγ→ `+`− samples are produced using the LPAIR v4.0 generator [42, 43].

The backgrounds from inclusive diboson, W+jets, and tt production are simulated with MAD-
GRAPH. For tt production the yields are normalized to the next-to-next-to-leading-order (NNLO)
plus next-to-next-to-leading-logarithmic cross section prediction obtained with Top++2.0 [44].
For inclusive diboson and W+jets production the yields are normalized to the NNLO and next-
to-leading-order cross section predictions, respectively, and are obtained with MCFM v6.6 [45].
Inclusive Drell–Yan samples are simulated with POWHEG v1.0 [46–48]. The outgoing partons
from the matrix element calculation in both MADGRAPH and POWHEG are matched to parton
showers from the PYTHIA v6.4.26 [49] with the Z2* tune [50] for the analysis of the 8 TeV data
and with the Z2 tune [51] for the analysis of the 7 TeV data. The simulated inclusive W+W−

sample does not include events generated in diffractive topologies, in which one of the incom-
ing protons remains intact. While diffractive W+W− production is expected to be small com-
pared to the rate of inclusive W+W− production, the mean multiplicity of charged particles
in diffractive events will be smaller, thus enhancing the contribution of diffractive production
to the exclusive signal region. The contribution from diffractive W+W− production is simu-
lated with POMPYT v2.6.1 [52], using diffractive parton distribution functions obtained from
the H1 fit B to diffractive deep inelastic scattering data [53]. In practice, the diffractive W+W−

background may be suppressed by a “gap survival probability” factor, representing the effect
of rescattering interactions that will lead to additional hadronic activity in the event. As this
factor is not precisely predicted or measured at LHC energies [54], a very conservative 100%
gap survival probability is assumed. Gluon-induced central exclusive production of W+W−

pairs, with an additional “screening” gluon emission to cancel the color flow, is expected to be
heavily suppressed [55] and is neglected in the current analysis.

Electroweak production (at order α5
EW or α6

EW for real W+W− emission) of W+W− pairs, in-
cluding WW→WW scattering, is also not included in the simulated inclusive W+W− sample.
We use a sample generated with MADGRAPH, which describes well the electroweak produc-
tion of Zqq (where ‘q’ indicates a quark jet) at

√
s = 8 TeV [56], to estimate the central value of

the electroweak W+W−qq background, with PHANTOM v1.0 [57] used for systematic studies.

All simulated samples are passed through a detailed GEANT4 simulation [58] of the CMS de-
tector. The same algorithms are used to reconstruct both the simulated samples and collision
data.

5 Event selection
The event selection is similar for both µ±e∓ final states used to search for a W+W− signal,
and for the µ+µ− and e+e− final states used as control samples. The events are triggered
by the presence of two leptons with transverse momentum pT > 17(8)GeV for the leading
(subleading) lepton.

Offline, the leptons are required to be of opposite charge, to have pT > 20 GeV, to pass “tight”
identification criteria for muons [59] and “medium” identification criteria for electrons [37],
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and come from the same reconstructed primary vertex. Primary vertices are identified by clus-
tering tracks according to a deterministic annealing algorithm, and subsequently performing
a fit to the clustered tracks [38]. The “tight” muon identification includes requirements on the
minimum number of muon detector planes hit, the minimum number of hits in the pixel detec-
tor and of layers hit in the silicon strip detector, the goodness of the global fit to the muon track,
and the transverse impact parameter with respect to the primary vertex. An additional require-
ment that the longitudinal impact parameter be at most 5 mm is added for the 8 TeV analysis
and was not present in the 7 TeV analysis. This requirement is added to suppress cosmic muons,
muons from decays in flight of charged mesons, and tracks from pileup. The “medium” identi-
fication criteria for electrons combines information from the ECAL, HCAL, and silicon tracker.
This includes selections on the azimuthal angle and pseudorapidity differences between the
tracks and ECAL deposits associated to the electron candidate, the ratio of energy deposited in
the HCAL to that in the ECAL, the shower shape of the ECAL deposits, and the compatibility
of the energy deposited in the ECAL with the momentum of the associated track. In addition,
the electrons are required to satisfy relative isolation criteria, based on the global particle-flow
algorithm [60, 61]. The invariant dilepton mass is also required to satisfy m(`+`−) > 20 GeV in
order to remove any potential background due to low-mass resonances, which is particularly
relevant in the µ+µ− and e+e− final states.

The final signal region is then defined by the presence of an opposite-charge electron-muon
pair originating from a common primary vertex that has no additional tracks associated with
it, and has transverse momentum pT(µ

±e∓) > 30 GeV. The zero-additional-tracks requirement
is motivated by the lack of underlying event activity expected for exclusive and quasi-exclusive
γγ→W+W− production, in which the beam protons remain intact or dissociate into an unde-
tected forward system respectively, in contrast to backgrounds from inclusive diboson produc-
tion. The pT(µ

±e∓) > 30 GeV requirement is designed to suppress backgrounds from τ+τ−

production, including the exclusive and quasi-exclusive γγ→ τ+τ− processes.

6 The γγ→ `+`− control samples and corrections
In the µ+µ− and e+e− final states, backgrounds due to direct γγ→ `+`− production and Drell–
Yan processes are much larger than in the µ±e∓ channel. Therefore these channels are used as
control samples to study both the efficiency of the zero-additional-tracks selection, and the
theoretically poorly known proton dissociation contribution to high-mass γγ interactions [62].

First, in order to select a high-purity sample of elastic pp → p`+`−p events and study the ef-
ficiency of the additional track veto, we apply harsh selection criteria to the kinematics of the
lepton pair. These consist in requiring a small acoplanarity, |1− ∆φ(`+`−)/π| < 0.01 where
∆φ(`+`−) is the difference in azimuthal angle between the two leptons, and an invariant mass
incompatible with Z→ `+`− decays (m(`+`−) < 70 GeV or m(`+`−) > 106 GeV). The leptons
from elastic pp → p`+`−p events have small acoplanarity because the very small virtuality of
the exchanged photons results in a dilepton pair produced with pT(`

+`−) ∼ 0. The acopla-
narity and invariant mass requirements result in a sample expected to contain a negligible
contribution from inclusive backgrounds, but some contamination from γγ → `+`− events
where one or both of the protons dissociate. In this control sample we find a deficit in the data
compared to the theoretical prediction for events with zero additional tracks associated to the
dilepton vertex (Fig. 2). We have verified that this is due to the fact that the efficiency of the
additional-track veto is overestimated in the simulation. To numerically calculate the data-to-
simulation ratio, we use a tighter acoplanarity requirement (|1− ∆φ(`+`−)/π| < 0.001, corre-
sponding to >3σ in terms of the experimental resolution on the acoplanarity) to further reduce
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the contamination from γγ → `+`− events where one or both of the protons dissociate. The
data-to-simulation ratio is 0.63± 0.04 in the µ+µ− channel and 0.63± 0.07 in the e+e− chan-
nel. By comparing the shapes of the γγ → `+`− distributions we find a good data-to-theory
agreement, apart from the overall difference in normalization (Figs. 2 and 3). We therefore
apply this ratio, averaged over the µ+µ− and e+e− samples, as an efficiency correction to the
γγ→W+W− signal.
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Figure 2: Acoplanarity for the µ+µ− (left) and e+e− (right) final states in the elastic γγ→ `+`−

control region (|1 − ∆φ(`+`−)/π| < 0.01 and m(`+`−) < 70 GeV or m(`+`−) > 106 GeV)
and 0 additional tracks associated to the dilepton vertex. The data (points with error bars)
are compared to the simulated samples (histograms) in the top panels. The data/MC ratios
are shown in the bottom panels (the red line shows the extracted correction for the zero extra
tracks efficiency).

In exclusive and quasi-exclusive production, additional tracks identified as coming from the
dilepton vertex are predominantly misassociated tracks originating from other pileup vertices
in the event. These are mainly very low-pT, forward tracks not modeled perfectly by the sim-
ulation. Therefore an efficiency correction is applied to account for the resulting migration of
signal events to higher multiplicities. For inclusive backgrounds, migrations may happen in
both directions, with tracks from pileup vertices being wrongly associated with a dilepton ver-
tex, or tracks from the underlying event being wrongly associated with a pileup vertex. For the
largest background of inclusive W+W− production, the simulation is observed to reproduce
the data in the relevant control region; therefore no correction is applied to the backgrounds.

Simulations of high-mass γγ interactions with the LPAIR matrix element generator show that
they predominantly occur in events where at least one of the protons dissociates. However,
the cross section calculations do not include rescattering effects, in which additional gluon
interactions between the protons produce extra hadronic activity in the event besides the final-
state leptons or gauge bosons. As a result of these rescattering corrections, γγ → `+`− and
γγ → W+W− signal events will migrate to higher multiplicities. This is expected to be a large
effect, particularly for events in which both protons dissociate, with up to about 90% of events
being nonexclusive, depending on the exact kinematic range studied [25, 62]. The contribution
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Figure 3: Dilepton invariant mass for the µ+µ− (left) and e+e− (right) final states with an
acoplanarity requirement, |1− ∆φ(`+`−)/π| < 0.01, and zero additional tracks associated to
the dilepton vertex. The data (points with error bars) are compared to the simulated sam-
ples (histograms) in the top panels, and the data/MC ratios are shown in the bottom panels.
The exclusive-production simulated samples are scaled to the number of events in data for
m(`+`−) < 70 GeV or m(`+`−) > 106 GeV. The Drell–Yan simulation is scaled to the number
of events in data for 70 < m(`+`−) < 106 GeV. The last bin in both plots is an overflow bin and
includes all events with invariant mass greater than 200 GeV.

from proton dissociation is therefore estimated directly from the data, rather than relying on
simulation.

To estimate the contribution due to proton dissociation in a kinematic region similar to the
W+W− signal, we select a sample of dilepton events with invariant mass greater than 160 GeV,
corresponding to the threshold for the production of two on-shell W bosons, with no additional
tracks associated with the dilepton vertex. We then compute the ratio of the number of events
measured in this region to the predicted number of elastic pp → p`+`−p events, with the
additional track veto efficiency correction applied and the Drell–Yan contribution subtracted
from the data. This results in a scale factor F = 4.10± 0.43, with the uncertainty determined
from the statistical uncertainty of the data control sample, that is used to correct the elastic
pp → pW+W−p prediction to the total pp → p(∗)W+W−p(∗) prediction, including proton
dissociation.

Figure 4 shows the dilepton invariant mass distribution for events with no additional tracks at
the dilepton vertex. The theoretical double-dissociation contribution (blue dotted line on top of
the sum of all other simulated data samples in Fig. 4) is much larger than the data, because the
value of the gap survival probability factor is too high in the calculations, whereas at high dilep-
ton mass the data are consistent with a very low survival probability for this contribution. For
a 100% gap survival probability in double-dissociation processes, the scale factor to correct the
elastic prediction would be F = 7.71± 0.57, by applying the same procedure described above
but using the single- and double-dissociation simulated samples. If the double-dissociation
contribution is assumed to be negligible (i.e. if we take its associated gap survival factor to
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be 0%), the proton dissociation factor estimated from the simulation with single dissociation
included, would be F = 4.39± 0.48, i.e. compatible with that extracted from the data-driven
method described above.
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Figure 4: Dilepton invariant mass for the µ+µ− (left) and e+e− (right) final states in the
γγ → `+`− proton dissociation control region with no additional tracks associated to the
dilepton vertex, for data (points with error bars) and simulated samples (histograms, with the
efficiency correction applied to the exclusive samples). The last bin is both plots is an overflow
bin and includes all events above the maximum value in the plot. The bottom panels show the
data/MC ratio where the denominator includes the sum of all simulated samples except the
double-dissociation contribution (shown as the blue dotted line in the top plots).

7 Backgrounds
7.1 Inclusive diboson backgrounds

The dominant inclusive diboson backgrounds consist mainly of W+W− events, with a small
contribution from WZ and ZZ events. As indicated in Table 1, the inclusive diboson back-
ground is reduced by a factor of more than 300 by vetoing on additional tracks at the µ±e∓ ver-
tex. The remaining backgrounds are studied by selecting electron-muon vertices with pT(µ

±e∓) >
30 GeV, and 1–6 additional tracks. The event yields and kinematic distributions are compatible
with the expectations from simulation, with 247.0± 8.0 (stat) events expected and 214 events
observed in data (Fig. 5).

The inclusive W+W− background estimate obtained using MADGRAPH for the signal region
(no additional tracks and pT(µ

±e∓) > 30 GeV) is 2.2± 0.4 (stat) events. The prediction is ad-
ditionally cross-checked with an estimate based on PYTHIA, which also describes well the con-
trol region with 1–6 extra tracks. This results in an inclusive W+W− background prediction
of 2.5 ± 0.9 (stat) events, consistent with the default prediction using MADGRAPH. The WZ
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Figure 5: Distributions of µ±e∓ invariant mass (left) and acoplanarity (right) for data (points
with error bars) and expected backgrounds (histograms) for pT(µ

±e∓) > 30 GeV and 1–6 extra
tracks (inclusive W+W− control region). The last bin in the invariant mass plot is an overflow
bin and includes all events with m(µe) > 360 GeV. The bottom panels show the data/MC ratio.

and ZZ background estimates are obtained from MADGRAPH as well, and only contribute
0.1± 0.1 (stat) events in the signal region.

7.2 W+jets background

The background due to W+jets production, with one genuine lepton and one misidentified
or non-prompt lepton in a jet, is expected to be small. To study this background in data, a
control sample, expected to be dominated by W+jets, is selected with the pT(µ

±e∓) >30 GeV
requirement, where at least one of the two leptons has failed the nominal offline identification
described in Section 5. The control sample is expected to contain 78% W+jets events. To extract
a prediction for the W+jets background contribution in which both leptons pass the nominal
lepton identification requirements, we use the ratio of the number of events in the signal and
control regions calculated from simulation and multiply this ratio by the number of data events
in the control region. The resulting prediction in the signal region is 0.2 ± 0.1 (stat) events,
approximately 5% of the total background.

7.3 Drell–Yan background

The background due to DY τ+τ− production is suppressed by a factor of more than 700 by
the requirement of no additional tracks associated with the µ±e∓ vertex (Table 1). To check the
modeling of the DY background contribution, a control region with pT(µ

±e∓) < 30 GeV and
1–6 additional tracks is selected, resulting in a sample that is expected to contain 87% DY τ+τ−

events. We find an overall deficit in the data with respect to the prediction from simulation,
with 771 events observed and 1008± 27 (stat) events expected. Figure 6 shows that this deficit
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appears at low mass and low-acoplanarity where the DY background is expected. At higher
values of the mass and acoplanarity where the inclusive W+W− contribution is significant,
the data agree well with the simulation, consistent with the behavior observed in the W+W−

control region. The number of simulated DY events surviving in the signal region after all se-
lections is zero, therefore no rescaling of the DY background is performed based on the control
region yields.
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Figure 6: Distributions of µ±e∓ invariant mass (left) and acoplanarity (right) for data (points
with error bars) and expected backgrounds (histograms) for pT(µ

±e∓) < 30 GeV and 1–6 extra
tracks (Drell–Yan τ+τ− control region). The last bin in both plots is an overflow bin and in-
cludes all events above the maximum value in the plot. The bottom panels show the data/MC
ratio.

7.4 The γγ→ τ+τ− background

As γγ → τ+τ− is produced in both exclusive and quasi-exclusive topologies, it cannot be
completely eliminated by requiring no additional tracks at the µ±e∓ vertex. The requirement
that pT(µ

±e∓) > 30 GeV, however, combined with the 20 GeV single-lepton thresholds, reduces
this background to approximately one event in the signal region (Table 1).

A control sample enriched in γγ → τ+τ− events is selected by requiring an electron-muon
vertex with no additional associated tracks, and pT(µ

±e∓) < 30 GeV. In data, 11 events are
observed, compared to a prediction of 12.9 ± 2.5, including 3.4 ± 0.5 events expected from
γγ→ τ+τ− production. The kinematic distributions are in good agreement with the predicted
sum of γγ→ τ+τ− and other backgrounds (Fig. 7).

7.5 Summary of backgrounds

The number of expected signal and background events at each stage of the selection is shown
in Table 1. As described in Section 4, the diffractive W+W− background is estimated from
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Figure 7: Distributions of µ±e∓ invariant mass (left) and acoplanarity (right) for data (points
with error bars) and expected backgrounds (histograms) for pT(µ

±e∓) < 30 GeV and no ad-
ditional tracks (γγ → τ+τ− control region). The last bin in both plots is an overflow bin
and includes all events above the maximum value in the plot. The bottom panels show the
data/MC ratio.

simulation, assuming the maximal gap survival probability of 100%. By assuming a smaller
survival probability the total background prediction would decrease by at most 0.1 events,
which is less than 3% of the total background and less than 2% of the expected SM signal. The
“Other backgrounds” category includes the contributions of tt̄, W+jets, electroweak W+W−qq,
diffractive W+W−, and jets. The total expected background is 3.9± 0.6 events, with the largest
contribution coming from inclusive W+W− production. The expected SM signal is 5.3± 0.7
events.

As a final check for potential mismodeled backgrounds, we examine same-charge µ±e± events.
In the control region with 1–6 extra tracks and pT(µ

±e±) > 30 GeV, 28 such events are ob-
served, with track multiplicity and invariant mass distributions consistent with the simula-
tion, which predicts 20.6± 2.1 events. In the signal-like region with no additional tracks and
pT(µ

±e±) > 30 GeV, no same-charge events are observed in the data, consistent with the pre-
diction of 0.12 background events from simulation.

8 Systematic uncertainties
We consider systematic uncertainties related to the integrated luminosity, the lepton trigger
and selection efficiency, the efficiency of the additional track veto, and the uncertainty in the
proton dissociation contribution.

The integrated luminosity uncertainty for the 8 TeV data set used in this measurement is esti-
mated to be 2.6% [63]. The trigger and lepton identification efficiencies are corrected for differ-
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Table 1: Number of expected signal and background events in simulation passing each se-
lection step, normalized to an integrated luminosity of 19.7 fb−1. The preselection includes
events with an opposite-charge muon and electron associated with the same vertex, each with
pT > 20 GeV and |η| < 2.4, and <16 additional tracks at the vertex. Uncertainties are statistical
only.

Selection step Data Exclusive Total Inclusive Drell-Yan γγ→ ττ Other
γγ→WW background diboson backgrounds

Trigger and Preselection 19406 26.9±0.2 22180±1890 1546±15 7093±75 18.1±0.8 13520±1890
m(µ±e∓) > 20 GeV 18466 26.6±0.2 21590±1850 1507±15 7065±75 18.1±0.8 13000±1850
Muon and electron identification 6541 22.5±0.2 6640±93 1306±11 4219±58 12.6±0.7 1102±72
µ±e∓ vertex with no add. tracks 24 6.7±0.2 15.2±2.5 3.7±0.7 6.5±2.3 4.3±0.5 0.7±0.1
pT(µ

±e∓) > 30 GeV 13 5.3±0.1 3.9±0.5 2.3±0.4 0.1±0.1 0.9±0.2 0.6±0.1

ences between data and simulation using control samples of Z→ `+`− events. The systematic
uncertainty is estimated from the statistical uncertainty associated with the correction applied,
resulting in an uncertainty of 2.4% in the signal efficiency.

The correction for the efficiency of the additional track veto is obtained from the control sam-
ples of elastic-enriched γγ → `+`− events, as described in Section 6. Since the correction
factors obtained in the µ+µ− and e+e− channels are consistent, they are combined to obtain the
final correction factor. The systematic uncertainty is estimated from the statistical uncertainty
associated with the correction applied, resulting in an overall uncertainty of 5% in the signal
efficiency.

The normalization factor for the proton dissociation contribution to the signal is obtained from
high-mass γγ → `+`− events in data as explained in Section 6. The statistical uncertainty in
this factor is 9.2%, based on the combination of the µ+µ− and e+e− channels. An additional ef-
fect of 5.0% must be included to describe the difference between the matrix element prediction
of LPAIR used in the method described in Section 6, and the equivalent photon approximation
used to generate signal events. Adding in quadrature these contributions results in an over-
all systematic uncertainty of 10.5% related to the proton dissociation contribution. It is also
checked that the proton dissociation factor does not vary as a function of the dilepton invariant
mass threshold, between 100–400 GeV.

The full list of systematic uncertainties for the signal efficiency is shown in Table 2. The overall
systematic uncertainty assigned to the signal is 12.2%. The systematic uncertainties considered
for the background prediction include the limited statistics of the relevant simulation or data
control samples, integrated luminosity, trigger efficiency, and lepton identification efficiency.
In addition, an uncertainty of ±0.24 events in the electroweak W+W− background contribu-
tion is included, corresponding to the difference between the background predictions of the
MADGRAPH and PHANTOM generators.

Table 2: Summary of systematic uncertainties affecting the signal.

Uncertainty
Proton dissociation factor 10.5%
Efficiency correction for no add. tracks 5.0%
Trigger and lepton identification 2.4%
Integrated luminosity 2.6%
Total 12.2%
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9 Results
The total expected signal from standard model exclusive or quasi-exclusive γγ→W+W− pro-
duction in the 8 TeV data set is 5.3± 0.7 events, with an expected background of 3.9± 0.6 events.
This corresponds to a mean expected signal significance of 2.1σ. Figure 8 shows the pT(µ

±e∓)
and extra-tracks multiplicity distributions for events passing all other selection requirements.
In the signal region with no additional tracks and pT(µ

±e∓) > 30 GeV, 13 events are observed
in the data that pass all the selection criteria. The properties of the selected events, including
the µ±e∓ invariant mass, acoplanarity, and missing transverse energy (Emiss

T ), are consistent
with the SM signal plus background prediction (Fig. 9).
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Figure 8: Distributions of muon-electron transverse momentum for events with zero associated
tracks (left), and extra-tracks multiplicity for events with pT(µ

±e∓) > 30 GeV (right). The data
are shown by the points with error bars; the histograms indicate the expected SM signal and
backgrounds. Two representative values for anomalous couplings are shown stacked on top of
the backgrounds. The last bin in the pT(µ

±e∓) distribution is an overflow bin and includes all
events with pT(µ

±e∓) > 210 GeV.

The observed significance above the background-only hypothesis in the 8 TeV data, including
systematic uncertainties, is 3.2σ. In the 7 TeV data, two events were observed in the signal
region, with an expected background of 0.84± 0.15 events, corresponding to an observed (ex-
pected) significance of 0.8σ (1.8σ). We combine the 7 and 8 TeV results, treating all systematic
uncertainties as fully uncorrelated between the two measurements, with the exception of the
5% uncertainty from the use of the equivalent photon approximation in the generation of signal
samples, which is treated as fully correlated between the two analyses. The resulting observed
(expected) significance for the 7 and 8 TeV combination is 3.4σ (2.8σ), constituting evidence for
γγ→W+W− production in proton-proton collisions at the LHC.

9.1 Cross section measurement

Interpreting the 8 TeV results as a cross section multiplied by the branching fraction to µ±e∓

final states, corrected for all experimental efficiencies and extrapolated to the full phase space,
yields:

σ(pp→ p(∗)W+W−p(∗) → p(∗)µ±e∓p(∗)) = 11.9+5.6
−4.5 fb.

The SM prediction is 6.9± 0.6 fb, with the uncertainty reflecting the uncertainty in the proton
dissociation contribution to the signal. The acceptance for the SM signal calculated from the
simulation is 57.8 ± 0.9%.
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Figure 9: Muon-electron invariant mass (top left), acoplanarity (top right), and missing trans-
verse energy (bottom) in the γγ → W+W− signal region. The data are shown by the points
with error bars; the histograms indicate the expected SM signal and backgrounds. The last bin
in the invariant mass and missing transverse energy plots is an overflow bin and includes also
all events above the maximum value in the plot.

The corresponding 95% confidence level (CL) upper limit obtained from the 7 TeV data was [5]:

σ(pp→ p(∗)W+W−p(∗) → p(∗)µ±e∓p(∗)) < 10.6 fb,

with a central value of 2.2+3.3
−2.0 fb. The corresponding SM prediction at 7 TeV is 4.0± 0.7 fb, with

the uncertainty reflecting that of the proton dissociation contribution to the signal.

9.2 Anomalous couplings

We use the dilepton transverse momentum pT(µ
±e∓) (Fig. 8, left) as a discriminating vari-

able to extract limits on AQGCs. Two bins, with boundaries pT(µ
±e∓) = 30–130 GeV and

pT(µ
±e∓) > 130 GeV, are used in the limit setting procedure for the 8 TeV analysis. The bin

boundaries are chosen such that the a priori expectation for SM γγ → W+W− in the highest
bin is ∼0.1 events, with other backgrounds, predominantly electroweak W+W− production,
contributing an additional ∼0.1 events. In the 7 TeV analysis [5] a single bin with pT(µ

±e∓) >
100 GeV was used, also chosen such that the a priori expectation for SM γγ → W+W− is ∼0.1
events.

In both the 7 and 8 TeV analyses, and in the combination, the Feldman–Cousins prescription [64]
is used to derive limits. In the 7 TeV analysis, where the number of expected and observed
events was near zero, the inclusion of systematic uncertainties in the background estimate re-
sulted in a shortening of the 95% confidence interval. Therefore a conservative procedure of
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integrating the systematic uncertainties out, reproducing the method advocated by Cousins
and Highland [65], was used. In the 8 TeV analysis and in the 7+8 TeV combination, no such
effect is observed, therefore the systematic uncertainties are included as log-normal nuisance
parameters in the limit calculation. As in the case of the combined significance calculations, the
systematic uncertainties are treated as uncorrelated between the two data sets, except for the
EPA uncertainty, which is fully correlated.

Table 3 summarizes all of the limits on the dimension-6 and dimension-8 AQGC parameters
obtained from the 7 and 8 TeV γγ → W+W− data separately, and from the combination of the
two. The 7 TeV dimension-6 results are taken from Ref. [5], and translated into the dimension-8
formalism as described in Section 2, using Eq. (1). For these limits all parameters except the one
shown are fixed to zero (the value expected in the standard model). The 8 TeV results are an
improvement over previously published values with Λcutoff = 500 GeV [5, 19, 21], of which the
CMS 7 TeV limits of 1.5× 10−4 GeV−2 and 5× 10−4 GeV−2 on aW

0 /Λ2 and aW
C /Λ2, respectively,

are the most stringent. These limits are also approximately two orders of magnitude more
stringent than those obtained at LEP [12–18], where unitarity was approximately preserved
without form factors, due to the lower

√
s of e+e− collisions. By combining the 7 and 8 TeV

data sets, we find upper limits at 95% CL that are ∼10% more restrictive than the 8 TeV results
alone, for the case of a dipole form factor with Λcutoff = 500 GeV.

With no form factor corrections, there is nothing to prevent the rapidly increasing cross section
from violating unitarity at high energies in the theory. We also obtain exclusion results in this
scenario, listed in Table 3, for comparison with other unitarity-violating limits on the same
operators [5, 19–21, 23]. In this case the high-energy behavior leads to a larger improvement
when comparing the 8 TeV to the 7 TeV results in the γγ→W+W− channel. The dominance of
the 8 TeV results in the unitarity-violating limits also results in only a very small improvement
when they are combined with the 7 TeV limits.

Table 3: Summary of all 95% CL AQGC limits derived from the measured pT(µe) distributions
in the γγ → W+W− signal region production in CMS at 7 and 8 TeV. The second column lists
the 7 TeV limits on dimension-6 operators taken from Ref. [5], as well as their conversion to
dimension-8 operators at 7 TeV. The third column contains the 8 TeV results described in this
paper. The final column shows the combined 7 and 8 TeV limits.

Dimension-6 AQGC parameter 7 TeV (×10−4 GeV−2) 8 TeV (×10−4 GeV−2) 7+8 TeV (×10−4 GeV−2)
aW

0 /Λ2(Λcutoff = 500 GeV) −1.5 < aW
0 /Λ2 < 1.5 −1.1 < aW

0 /Λ2 < 1.0 −0.9 < aW
0 /Λ2 < 0.9

aW
C /Λ2(Λcutoff = 500 GeV) −5 < aW

C /Λ2 < 5 −4.2 < aW
C /Λ2 < 3.4 −3.6 < aW

C /Λ2 < 3.0
Dimension-8 AQGC parameter 7 TeV (×10−10 GeV−4) 8 TeV (×10−10 GeV−4) 7+8 TeV (×10−10 GeV−4)
fM,0/Λ4(Λcutoff = 500 GeV) −5.7 < fM,0/Λ4 < 5.7 −3.8 < fM,0/Λ4 < 4.2 −3.4 < fM,0/Λ4 < 3.4
fM,1/Λ4(Λcutoff = 500 GeV) −19 < fM,1/Λ4 < 19 −16 < fM,1/Λ4 < 13 −14 < fM,1/Λ4 < 12
fM,2/Λ4(Λcutoff = 500 GeV) −2.8 < fM,2/Λ4 < 2.8 −1.9 < fM,2/Λ4 < 2.1 −1.9 < fM,2/Λ4 < 1.9
fM,3/Λ4(Λcutoff = 500 GeV) −9.5 < fM,3/Λ4 < 9.5 −8.0 < fM,3/Λ4 < 6.5 −6.8 < fM,3/Λ4 < 5.7

Dimension-6 AQGC parameter 7 TeV (×10−6 GeV−2) 8 TeV (×10−6 GeV−2) 7+8 TeV (×10−6 GeV−2)
aW

0 /Λ2(no form factor) −4 < aW
0 /Λ2 < 4 −1.2 < aW

0 /Λ2 < 1.2 −1.1 < aW
0 /Λ2 < 1.1

aW
C /Λ2(no form factor) −15 < aW

C /Λ2 < 15 −4.4 < aW
C /Λ2 < 4.4 −4.1 < aW

C /Λ2 < 4.1
Dimension-8 AQGC parameter 7 TeV (×10−12 GeV−4) 8 TeV (×10−12 GeV−4) 7+8 TeV (×10−12 GeV−4)
fM,0/Λ4(no form factor) −15 < fM,0/Λ4 < 15 −4.6 < fM,0/Λ4 < 4.6 −4.2 < fM,0/Λ4 < 4.2
fM,1/Λ4(no form factor) −57 < fM,1/Λ4 < 57 −17 < fM,1/Λ4 < 17 −16 < fM,1/Λ4 < 16
fM,2/Λ4(no form factor) −7.6 < fM,2/Λ4 < 7.6 −2.3 < fM,2/Λ4 < 2.3 −2.1 < fM,2/Λ4 < 2.1
fM,3/Λ4(no form factor) −28 < fM,3/Λ4 < 28 −8.4 < fM,3/Λ4 < 8.4 −7.8 < fM,3/Λ4 < 7.8

We perform a similar procedure to derive two-dimensional limits in the (aW
0 /Λ2, aW

C /Λ2) pa-
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Figure 10: Excluded values of the anomalous coupling parameters aW
0 /Λ2 and aW

C /Λ2 with
Λcutoff = 500 GeV. The exclusion regions are shown for the CMS measurements of γγ →
W+W− at 7 TeV (outer contour), 8 TeV (middle contour), and the 7+8 TeV combination (inner-
most contour). The areas outside the solid contours are excluded by each measurement at 95%
CL. The cross indicates the one-dimensional limits obtained for each parameter from the 7 and
8 TeV combination, with the other parameter fixed to zero.

rameter space for the unitarized results with Λcutoff = 500 GeV. The two-dimensional 95%
confidence level exclusion regions obtained from γγ→W+W− production at CMS are shown
in Fig. 10 for the 7 TeV data (from Ref. [5]), the 8 TeV data, and from the final 7 and 8 TeV com-
bination.

10 Conclusions
Results are presented for exclusive and quasi-exclusive γγ → W+W− production in the µ±e∓

final state in pp collisions at
√

s = 8 (7)TeV, using data samples corresponding to integrated
luminosities of 19.7 (5.05) fb−1. In the signal region with pT(µ

±e∓) > 30 GeV and no additional
charged particles associated with the µ±e∓ vertex, we observe 13 (2) events with an expected
background of 3.9 ± 0.6 (0.84 ± 0.15) events in the 8 (7) TeV data. The observed yields and
kinematic distributions are consistent with the SM prediction, with a combined significance
over the background-only hypothesis of 3.4σ. No significant deviations from the SM are ob-
served in the pT(µ

±e∓) distribution, and the combined 7+8 TeV limits are interpreted in terms
of improved constraints on dimension-6 and dimension-8 anomalous quartic gauge operator
couplings.
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Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram15, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert,
N. Chanon, C. Collard, E. Conte15, X. Coubez, J.-C. Fontaine15, D. Gelé, U. Goerlach,
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